Vector Autoregressive Model-Based Anomaly Detection in Aviation Systems

نویسندگان

  • Igor Melnyk
  • Bryan L. Matthews
  • Hamed Valizadegan
  • Arindam Banerjee
  • Nikunj C. Oza
چکیده

Detecting anomalies in datasets, where each data object is a multivariate time series (MTS), possibly of different length for each data object, is emerging as a key problem in certain domains. We consider the problem in the context of aviation safety, where data objects are flights of various durations, and the MTS corresponds to sensor readings. The goal then is to detect anomalous flight segments, due to mechanical, environmental, or human factors. In this paper, we present a general framework for anomaly detection in such settings, by representing each MTS using a vector autoregressive exogenous (VARX) model, constructing a distance matrix among the objects based on their respective VARX models, and finally detecting anomalies based on the object dissimilarities. The framework is scalable, due to the inherent parallel nature of most computations, and can be used to perform online anomaly detection. Experimental results on a real flight dataset illustrate that the framework can detect different types of multivariate anomalies along with the key parameters involved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Limit-checking for Spacecraft Using Relevance Vector Autoregressive Model

Development of advanced anomaly detection and failure diagnosis technologies for spacecraft is a quite significant issue in the space industry, because the space environment is harsh, distant and uncertain. While several modern approaches based on qualitative reasoning, expert systems, and probabilistic reasoning have been developed recently for this purpose, any of them has a common difficulty...

متن کامل

ADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS

In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...

متن کامل

راهکار ترکیبی نوین جهت تشخیص نفوذ در شبکه‌های کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی

In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...

متن کامل

Vector Autoregressive Model Selection: Gross Domestic Product and Europe Oil Prices Data Modelling

 We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...

متن کامل

Structural Health Monitoring With Autoregressive Support Vector Machines

The use of statistical methods for anomaly detection has become of interest to researchers in many subject areas. Structural health monitoring in particular has benefited from the versatility of statistical damage-detection techniques. We propose modeling structural vibration sensor output data using nonlinear time-series models. We demonstrate the improved performance of these models over curr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Aerospace Inf. Sys.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016